Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Article in English | MEDLINE | ID: mdl-38664124

ABSTRACT

BACKGROUND AND AIMS: While serum osteopontin (OPN)'s established role in cardiometabolic risk is recognized, its potential as a predictor of metabolic syndrome (MetS) improvement through a urine assay has not yet been demonstrated. In this study, we propose its potential predictive role over a 12-month period of standard care, with the ability to complement anthropometric measures. METHODS AND RESULTS: Hierarchical clustering revealed a notable association of urinary OPN (uOPN) with MetS criteria and overcame anthropometric measures in predicting the improvement at 12 months (OR of 2.74 [95% CI 1.32 to 6.29]). uOPN significantly contributed to the homogeneity of the nodes in the random forest and ultimately enhanced the performance of anthropometric measures when assessed for accuracy and area under the curve (AUC). CONCLUSION: Our findings offer insights into potential applications in cardiometabolic medicine for uOPN, which is easily detectable in non-invasive biological samples through an affordable assay.

3.
J Cell Mol Med ; 28(7): e18192, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38506079

ABSTRACT

In the last decade, extensive attention has been paid to the uremic toxin indoxyl sulphate (IS) as an inducer of cardiac fibroblast (cFib) activation and cardiac fibrosis in chronic kidney disease. At cellular level, IS engages aryl hydrocarbon receptor (AhR) and regulates many biological functions. We analysed how AhR inhibition by CH-223191 (CH) and overexpression of non-functional (dominant negative, DN) nuclear factor-erythroid-2-related factor 2 (NRF2), a transcription factor recruited by AhR, modulate the response of neonatal mouse (nm) cFib to IS. We also evaluated nm-cardiomyocytes after incubation with the conditioned medium (CM) of IS±CH-treated nm-cFib. IS induced activation, collagen synthesis, TLR4 and-downstream-MCP-1, and the genes encoding angiotensinogen, angiotensin-converting enzyme, angiotensin type 1 receptor (AT1r) and neprilysin (Nepr) in nm-cFib. CH antagonized IS-initiated nm-cFib activation, but did not affect or even magnified the other features. IS promoted NRF2 nuclear translocation and expression the NRF2 target Nqo1. Both pre-incubation with CH and transfection of DN-NRF2 resulted in loss of NRF2 nuclear localization. Moreover, DN-NRF2 overexpression led to greater TLR4 and MCP-1 levels following exposure to IS. The CM of IS-primed nm-cFib and to a larger extent the CM of IS+CH-treated nm-cFib upregulated AT1r, Nepr and TNFα and myostatin genes in nm-cardiomyocytes. Hence, IS triggers pro-inflammatory activation of nm-cFib partly via AhR, and AhR-NRF2 counteract it. Strategies other than AhR inhibition are needed to target IS detrimental actions on cardiac cells.


Subject(s)
Indican , Signal Transduction , Mice , Animals , Indican/pharmacology , Indican/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Toll-Like Receptor 4/genetics , Fibroblasts/metabolism
6.
Environ Int ; 184: 108444, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38281449

ABSTRACT

There is a growing concern within the medical community about the potential burden of microplastics on human organs and tissues. In this study, we investigated by microRaman spectroscopy the presence of microplastics in human kidneys and urine. Moreover, an open-access software was developed and validated for the project, which enabled the comparison between the investigated spectra and a self-created spectral database, thus enhancing the ability to characterize polymers and pigments in biological matrices. Healthy portions of ten kidneys obtained from nephrectomies, as well as ten urine samples from healthy donors were analyzed: 26 particles in both kidney and urine samples were identified, with sizes ranging from 3 to 13 µm in urine and from 1 to 29 µm in kidneys. The most frequently determined polymers are polyethylene and polystyrene, while the most common pigments are hematite and Cu-phthalocyanine. This preclinical study proves the presence of microplastics in renal tissues and confirms their presence in urine, providing the first evidence of kidney microplastics deposition in humans.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Polymers , Spectrum Analysis , Kidney/chemistry
7.
J Clin Med ; 13(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38256456

ABSTRACT

Cellular senescence has emerged as an important driver of aging and age-related disease in the kidney. The activity of ß-galactosidase at pH 6 (SA-ß-Gal) is a classic maker of senescence in cellular biology; however, the predictive role of kidney tissue SA-ß-Gal on eGFR loss in chronic kidney disease (CKD) is still not understood. We retrospectively studied the expression of SA-ß-Gal in kidney biopsies obtained in a cohort [n = 22] of incident patients who were followed up for 3 years as standard of care. SA-ß-Gal staining was approximately fourfold higher in the tubular compartment of patients with CKD vs. controls [26.0 ± 9 vs. 7.4 ± 6% positive tubuli in patients vs. controls; p < 0.025]. Tubular expressions of SA-ß-Gal, but not proteinuria, at the time of biopsy correlated with eGFR loss at the follow up; moreover, SA-ß-Gal expression in more than 30% of kidney tubules was associated with fast progressive kidney disease. In conclusion, our study shows that SA-ß-Gal is upregulated in the kidney tubular compartment of adult patients affected by CKD and suggests that tubular SA-ß-Gal is associated with accelerated loss of renal function.

8.
Nat Commun ; 14(1): 6951, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907500

ABSTRACT

Identifying oncological applications for drugs that are already approved for other medical indications is considered a possible solution for the increasing costs of cancer treatment. Under the hypothesis that nutritional stress through fasting might enhance the antitumour properties of at least some non-oncological agents, by screening drug libraries, we find that cholesterol biosynthesis inhibitors (CBIs), including simvastatin, have increased activity against cancers of different histology under fasting conditions. We show fasting's ability to increase CBIs' antitumour effects to depend on the reduction in circulating insulin, insulin-like growth factor-1 and leptin, which blunts the expression of enzymes from the cholesterol biosynthesis pathway and enhances cholesterol efflux from cancer cells. Ultimately, low cholesterol levels through combined fasting and CBIs reduce AKT and STAT3 activity, oxidative phosphorylation and energy stores in the tumour. Our results support further studies of CBIs in combination with fasting-based dietary regimens in cancer treatment and highlight the value of fasting for drug repurposing in oncology.


Subject(s)
Fasting , Simvastatin , Simvastatin/pharmacology , Simvastatin/therapeutic use , Diet , Insulin , Cholesterol
10.
Int J Mol Sci ; 24(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37762695

ABSTRACT

Plastic pollution became a main challenge for human beings as demonstrated by the increasing dispersion of plastic waste into the environment. Microplastics (MPs) have become ubiquitous and humans are exposed daily to inhalation or ingestion of plastic microparticles. Recent studies performed using mainly spectroscopy or spectrometry-based techniques have shown astounding evidence for the presence of MPs in human tissues, organs and fluids. The placenta, meconium, breast milk, lung, intestine, liver, heart and cardiovascular system, blood, urine and cerebrovascular liquid are afflicted by MPs' presence and deposition. On the whole, obtained data underline a great heterogeneity among different tissue and organs of the polymers characterized and the microparticles' dimension, even if most of them seem to be below 50-100 µm. Evidence for the possible contribution of MPs in human diseases is still limited and this field of study in medicine is in an initial state. However, increasing studies on their toxicity in vitro and in vivo suggest worrying effects on human cells mainly mediated by oxidative stress, inflammation and fibrosis. Nephrological studies are insufficient and evidence for the presence of MPs in human kidneys is still lacking, but the little evidence present in the literature has demonstrated histological and functional alteration of kidneys in animal models and cytotoxicity through apoptosis, autophagy, oxidative stress and inflammation in kidney cells. Overall, the manuscript we report in this review recommends urgent further study to analyze potential correlations between kidney disease and MPs' exposure in human.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Humans , Microplastics/toxicity , Plastics/toxicity , Plastics/chemistry , Environmental Pollution , Kidney/chemistry , Fibrosis , Water Pollutants, Chemical/analysis
11.
Nutrients ; 15(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37447158

ABSTRACT

Protein energy wasting (PEW) is a common complication both in chronic kidney disease (CKD) and end-stage kidney disease (ESKD). Of note, PEW is one of the stronger predictors of morbidity and mortality in this patient population. The pathogenesis of PEW involves several mechanisms, including anorexia, insulin resistance, acidosis and low-grade inflammation. In addition, "sterile" muscle inflammation contributes to PEW at an advanced CKD stage. Both immune and resident muscle cells can activate innate immunity; thus, they have critical roles in triggering "sterile" tissue inflammation. Toll-like receptor 4 (TLR4) can detect endogenous danger-associated molecular patterns generated or retained in blood in uremia and induce a sterile muscle inflammatory response via NF-κB in myocytes. In addition, TLR4, though the activation of the NLRP3 inflammasome, links the sensing of metabolic uremic stress in muscle to the activation of pro-inflammatory cascades, which lead to the production of IL-1ß and IL-18. Finally, uremia-induced accelerated cell senescence is associated with a secretory phenotype that favors fibrosis in muscle. Targeting these innate immune pathways could lead to novel therapies for CKD-related PEW.


Subject(s)
Renal Insufficiency, Chronic , Uremia , Humans , Cachexia/complications , Toll-Like Receptor 4/metabolism , Immunity, Innate , Renal Insufficiency, Chronic/therapy , Inflammation/complications , Uremia/complications , Muscles/metabolism
12.
Int J Mol Sci ; 24(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37298378

ABSTRACT

Arterial hypertension (AH) is a global challenge that greatly impacts cardiovascular morbidity and mortality worldwide. AH is a major risk factor for the development and progression of kidney disease. Several antihypertensive treatment options are already available to counteract the progression of kidney disease. Despite the implementation of the clinical use of renin-angiotensin aldosterone system (RAAS) inhibitors, gliflozins, endothelin receptor antagonists, and their combination, the kidney damage associated with AH is far from being resolved. Fortunately, recent studies on the molecular mechanisms of AH-induced kidney damage have identified novel potential therapeutic targets. Several pathophysiologic pathways have been shown to play a key role in AH-induced kidney damage, including inappropriate tissue activation of the RAAS and immunity system, leading to oxidative stress and inflammation. Moreover, the intracellular effects of increased uric acid and cell phenotype transition showed their link with changes in kidney structure in the early phase of AH. Emerging therapies targeting novel disease mechanisms could provide powerful approaches for hypertensive nephropathy management in the future. In this review, we would like to focus on the interactions of pathways linking the molecular consequences of AH to kidney damage, suggesting how old and new therapies could aim to protect the kidney.


Subject(s)
Hypertension, Renal , Hypertension , Humans , Kidney/metabolism , Renin-Angiotensin System , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Antihypertensive Agents/metabolism , Hypertension, Renal/metabolism
13.
Physiol Rep ; 11(6): e15573, 2023 03.
Article in English | MEDLINE | ID: mdl-36945836

ABSTRACT

Sites and mechanisms regulating the supply of homocysteine (Hcy) to the circulation are unexplored in humans. We studied the exchange of Hcy across the forearm in CKD patients (n = 17, eGFR 20 ± 2 ml/min), in hemodialysis (HD)-treated patients (n = 14) and controls (n = 9). Arterial Hcy was ~ 2.5 folds increased in CKD and HD patients (p < 0.05-0.03 vs. controls). Both in controls and in patients Hcy levels in the deep forearm vein were consistently greater (+~7%, p < 0.05-0.01) than the corresponding arterial levels, indicating the occurrence of Hcy release from muscle. The release of Hcy from the forearm was similar among groups. In all groups arterial Hcy varied with its release from muscle (p < 0.03-0.02), suggesting that muscle plays an important role on plasma Hcy levels. Forearm Hcy release was inversely related to folate plasma level in all study groups but neither to vitamin B12 and IL-6 levels nor to muscle protein net balance. These data indicate that the release of Hcy from peripheral tissue metabolism plays a major role in influencing its Hcy plasma levels in humans and patients with CKD, and that folate is a major determinant of Hcy release.


Subject(s)
Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/therapy , Renal Dialysis , Folic Acid , Vitamin B 12 , Muscle, Skeletal , Homocysteine
14.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769281

ABSTRACT

The mechanisms by which hyperuricemia induces vascular dysfunction and contributes to cardiovascular disease are still debated. Phenotypic transition is a property of vascular smooth muscle cells (VSMCs) involved in organ damage. The aim of this study was to investigate the effects of uric acid (UA) on changes in the VSMC cytoskeleton, cell migration and the signals involved in these processes. MOVAS, a mouse VSMC line, was incubated with 6, 9 and 12 mg/dL of UA, angiotensin receptor blockers (ARBs), proteasome and MEK-inhibitors. Migration property was assessed in a micro-chemotaxis chamber and by phalloidin staining. Changes in cytoskeleton proteins (Smoothelin B (SMTB), alpha-Smooth Muscle Actin (αSMA), Smooth Muscle 22 Alpha (SM22α)), Atrogin-1 and MAPK activation were determined by Western blot, immunostaining and quantitative reverse transcription PCR. UA exposition modified SMT, αSMA and SM22α levels (p < 0.05) and significantly upregulated Atrogin-1 and MAPK activation. UA-treated VSMCs showed an increased migratory rate as compared to control cells (p < 0.001) and a re-arrangement of F-actin. Probenecid, proteasome inhibition and ARBs prevented the development of dysfunctional VSMC. This study shows, for the first time, that UA-induced cytoskeleton changes determine an increase in VSMC migratory rate, suggesting UA as a key player in vascular remodeling.


Subject(s)
Muscle, Smooth, Vascular , Uric Acid , Mice , Animals , Muscle, Smooth, Vascular/metabolism , Uric Acid/pharmacology , Uric Acid/metabolism , Vascular Remodeling , Angiotensin Receptor Antagonists/pharmacology , Proteasome Endopeptidase Complex/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Cytoskeleton/metabolism , Cell Movement , Myocytes, Smooth Muscle/metabolism , Cells, Cultured , Cell Proliferation
15.
Front Mol Biosci ; 9: 854624, 2022.
Article in English | MEDLINE | ID: mdl-35755826

ABSTRACT

Background and Aim: High lipoprotein(a) [Lp(a)] is a well-established cardiovascular (CV) risk factor, but the effect of mildly elevated Lp(a) on CV health is largely unknown. Our aim was to evaluate if Lp(a) is associated with the severity of carotid atherosclerosis (CA) in the specific subset of metabolic syndrome (MetS). Patients and Methods: Subjects with diagnosed MetS and ultrasound-assessed CA were enrolled. Those patients were categorized according to the severity of CA (moderate vs. severe), and the circulating levels of Lp(a) alongside with clinical, anthropometric, and biochemical data were collected. Results: Sixty-five patients were finally included: twenty-five with moderate and forty with severe CA (all with asymptomatic disease). Intergroup comparison showed Lp(a) as the only significantly different variable [6 (2-12) mg/dl vs. 11.5 (6-29.5) mg/dl; p = 0.018]. Circulating levels of Lp(a) were also confirmed as the only variable independently associated with severity of CA at logistic regression analysis [OR 2.9 (95% CI 1.1-7.8); p = 0.040]. ROC curve analysis for Lp(a) confirmed a serum level of 10 mg/dl as the best cut-off value [AUC 0.675 (95% CI 0.548-0.786)]. Although sensitivity and specificity were suboptimal (69.0 and 70.4%, respectively)-likely due to the small sample size-this result is in line with those previously reported in the literature. Conclusion: Lp(a) is independently associated with severity of CA in the subgroup of MetS patients.

16.
Circ Res ; 131(3): 207-221, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35722884

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is characterized by increased myocardial mass despite near-normal blood pressure, suggesting the presence of a separate trigger. A potential driver is SIRPα (signal regulatory protein alpha)-a mediator impairing insulin signaling. The objective of this study is to assess the role of circulating SIRPα in CKD-induced adverse cardiac remodeling. METHODS: SIRPα expression was evaluated in mouse models and patients with CKD. Specifically, mutant, muscle-specific, or cardiac muscle-specific SIRPα KO (knockout) mice were examined after subtotal nephrectomy. Cardiac function was assessed by echocardiography. Metabolic responses were confirmed in cultured muscle cells or cardiomyocytes. RESULTS: We demonstrate that SIRPα regulates myocardial insulin/IGF1R (insulin growth factor-1 receptor) signaling in CKD. First, in the serum of both mice and patients, SIRPα was robustly secreted in response to CKD. Second, cardiac muscle upregulation of SIRPα was associated with impaired insulin/IGF1R signaling, myocardial dysfunction, and fibrosis. However, both global and cardiac muscle-specific SIRPα KO mice displayed improved cardiac function when compared with control mice with CKD. Third, both muscle-specific or cardiac muscle-specific SIRPα KO mice did not significantly activate fetal genes and maintained insulin/IGF1R signaling with suppressed fibrosis despite the presence of CKD. Importantly, SIRPα directly interacted with IGF1R. Next, rSIRPα (recombinant SIRPα) protein was introduced into muscle-specific SIRPα KO mice reestablishing the insulin/IGF1R signaling activity. Additionally, overexpression of SIRPα in myoblasts and cardiomyocytes impaired pAKT (phosphorylation of AKT) and insulin/IGF1R signaling. Furthermore, myotubes and cardiomyocytes, but not adipocytes treated with high glucose or cardiomyocytes treated with uremic toxins, stimulated secretion of SIRPα in culture media, suggesting these cells are the origin of circulating SIRPα in CKD. Both intracellular and extracellular SIRPα exert biologically synergistic effects impairing intracellular myocardial insulin/IGF1R signaling. CONCLUSIONS: Myokine SIRPα expression impairs insulin/IGF1R functions in cardiac muscle, affecting cardiometabolic signaling pathways. Circulating SIRPα constitutes an important readout of insulin resistance in CKD-induced cardiomyopathy.


Subject(s)
Cardiomyopathies , Receptor, IGF Type 1/metabolism , Receptors, Immunologic/metabolism , Renal Insufficiency, Chronic , Animals , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Fibrosis , Insulin/metabolism , Mice , Mice, Knockout , Myocytes, Cardiac/metabolism , Renal Insufficiency, Chronic/complications
17.
Front Immunol ; 13: 854749, 2022.
Article in English | MEDLINE | ID: mdl-35479070

ABSTRACT

Introduction: The Forkhead box protein P3 (FOXP3) is a transcription factor central to the function of regulatory T cells (Treg). Mutations in the FOXP3 gene lead to a systemic disease called immune dysregulation, polyendocrinopathy, and enteropathy, an X-linked syndrome (IPEX) characterized by the triad of early-onset intractable diarrhea, type 1 diabetes, and eczema. An atypical presentation of IPEX has been reported. Method: We report rare cases with equivocal clinical associations that included inflammatory, kidney, and hematologic involvements screened with massively parallel sequencing techniques. Results: Two patients with hemizygous mutations of FOXP3 [c.779T>A (p.L260Q)] and [c.1087A>G (p.I363V)] presented clinical manifestations not included in typical cases of IPEX: one was a 16-year-old male patient with an initial clinical diagnosis of autoimmune lymphoproliferative syndrome (ALPS) and who developed proteinuria and decreased kidney function due to membranous nephropathy, an autoimmune renal condition characterized by glomerular sub-epithelial antibodies. The second patient was a 2-year-old child with bone marrow failure who developed the same glomerular lesions of membranous nephropathy and received a bone marrow transplantation. High levels of IgG4 in serum, bone marrow, and kidney led to the definition of IgG4-related kidney disease (IgG4 RKD) in this young boy. The circulating Treg levels were normal in the former case and very low in the second. Conclusion: Two atypical associations of functional mutations of FOXP3 that include ALPS and IgG4 RKD are described. Membranous nephropathy leading to renal failure completed in both cases the clinical phenotypes that should be included in the clinical panorama of FOXP3 failure.


Subject(s)
Autoimmune Diseases , Genetic Diseases, X-Linked , Glomerulonephritis, Membranous , Child, Preschool , Female , Forkhead Transcription Factors/metabolism , Genetic Diseases, X-Linked/diagnosis , Genetic Diseases, X-Linked/genetics , Humans , Immunoglobulin G/genetics , Male , Mutation , T-Lymphocytes, Regulatory
18.
Kidney Med ; 4(2): 100397, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35243309

ABSTRACT

Membranous nephropathy (MN) is one of the most common causes of adult-onset nephrotic syndrome. We describe the cases of 2 young women in their 20s presenting with nephrotic syndrome due to antiphospholipase A2 receptor (anti-PLA2R)-negative MN, that was found to be associated with benign tumors. Both women had no extrarenal symptoms of a connective tissue disease, infection, or malignancy. They both had been previously healthy and were not receiving treatment with any drugs. Both had MN on kidney biopsy. Biopsies were negative for PLA2R antigen, and their serum did not demonstrate the presence of anti-PLA2R antibodies. Both were investigated for a secondary cause on the basis of negative anti-PLA2R serology and biopsy features supportive of secondary MN and were found to have benign tumors on radioimaging: a uterine leiomyoma and mesenteric fibromatosis, respectively. In both instances, the nephrotic syndrome remitted following resection of the tumors. To our knowledge, uterine leiomyoma and mesenteric fibromatosis have not previously been described in association with MN. These cases highlight the importance of pursuing a secondary cause of MN in patients without anti-PLA2R antibodies in serum or PLA2R antigen on kidney biopsy.

19.
Adv Clin Chem ; 106: 181-234, 2022.
Article in English | MEDLINE | ID: mdl-35152972

ABSTRACT

Myostatin is a member of the transforming growth factor (TGF)-ß superfamily. It is expressed by animal and human skeletal muscle cells where it limits muscle growth and promotes protein breakdown. Its effects are influenced by complex mechanisms including transcriptional and epigenetic regulation and modulation by extracellular binding proteins. Due to its actions in promoting muscle atrophy and cachexia, myostatin has been investigated as a promising therapeutic target to counteract muscle mass loss in experimental models and patients affected by different muscle-wasting conditions. Moreover, growing evidence indicates that myostatin, beyond to regulate skeletal muscle growth, may have a role in many physiologic and pathologic processes, such as obesity, insulin resistance, cardiovascular and chronic kidney disease. In this chapter, we review myostatin biology, including intracellular and extracellular regulatory pathways, and the role of myostatin in modulating physiologic processes, such as muscle growth and aging. Moreover, we discuss the most relevant experimental and clinical evidence supporting the extra-muscle effects of myostatin. Finally, we consider the main strategies developed and tested to inhibit myostatin in clinical trials and discuss the limits and future perspectives of the research on myostatin.


Subject(s)
Epigenesis, Genetic , Myostatin , Animals , Biology , Cachexia , Humans , Muscle, Skeletal/metabolism , Myostatin/genetics , Myostatin/metabolism
20.
J Neurosci Res ; 99(12): 3182-3203, 2021 12.
Article in English | MEDLINE | ID: mdl-34747065

ABSTRACT

High-grade gliomas (HGGs; WHO grades III and IV) are invariably lethal brain tumors. Low-dose hyper-radiosensitivity (HRS) of HGG is a well-established phenomenon in vitro. However, possibly linked to the unavailability of accurate animal models of the diseases, this therapeutic effect could not be consistently translated to the animal setting, thus impairing its subsequent clinical development. The purpose of this study was to develop radiotherapeutic (RT) schedules permitting to significantly improve the overall survival of faithful animal models of HGG that have been recently made available. We used primary glioma initiating cell (GIC)-driven orthotopic animal models that accurately recapitulate the heterogeneity and growth patterns of the patients' tumors, to investigate the therapeutic effects of low radiation doses toward HGG. With the same total dose, RT fractions ≤0.5 Gy twice per week [ultra-hyper-fractionation (ultra-hyper-FRT)] started at early stages of tumor progression (a condition that in the clinical setting often occurs at the end of the guidelines treatment) improved the effectiveness of RT and the animal survival in comparison to standard fractions. For the same cumulative dose, the use of fractions ≤0.5 Gy may permit to escape one or more tumor resistance mechanisms thus increasing the effectiveness of RT and the overall animal survival. These findings suggest investigating in the clinical setting the therapeutic effect of an ultra-hyper-FRT schedule promptly extending the conventional RT component of the current guideline ("Stupp") therapeutic protocol.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , Dose Fractionation, Radiation , Glioma/pathology , Glioma/radiotherapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...